VI Semester B.Sc. Examination, May 2017 (F+R) (CBCS – Fresh – 2016-17 and Onwards/NS – Repeaters – 2013-14 and Onwards) PHYSICS – VII

Atomic Physics, Nuclear Physics and Material Science

Time: 3 Hours Max. Marks: 70

Instruction: Answer five questions from each Part.

PART - A

Answer any five of the following questions. Each question carries eight marks: (5×8=40)

- Explain the different quantum numbers associated with vector atom model.
- 2. a) State Pauli's exclusion principle.
 - b) Obtain an expression for the maximum number of electrons that can be filled in a shell.
 - c) What is Bohr Magneton? Mention its S.I. Unit. (2+4+2)
- 3. a) Outline the quantum theory of Raman effect.
 - b) Mention any two applications of Raman effect. (6+2)
- 4. a) What are the assumptions made by Rutherford to explain alpha-ray scattering?
 - b) What is the path of an alpha particle? When it is scattered through a large angle by a nucleus?
 - c) Define "Impact Parameter" and "Scattering angle" and write the relation between them.

 (4+1+3)
- 5. Describe the construction and working of a Geiger-Muller counter and explain the features of its characteristic curve.
- 6. a) Distinguish between endoergic and exoergic nuclear reactions.
 - b) Derive an expression for the threshold energy of an endoergic nuclear reaction.

(2+6)

8

P.T.O.

- 7. a) What are nanomaterials? Mention the two approaches to synthesize nanomaterials.
 - b) Describe lyotropic liquid crystal. Mention any one application of liquid

8. Describe the various kinds of polarization when a dielectric material is placed in an external electric field.

PART-B

Answer any five problems. Each problem carries 4 marks:

9. In the Stern-Gerlach experiment silver atoms travels a distance of 0.15 m in a non-homogeneous magnetic field of gradient 60 Tm⁻¹. If the velocity of silver atoms is 400 ms⁻¹, calculate the separation between the two traces on a collector plate placed 0.5m from the pole pieces of the magnet. Given

Bohr magneton (
$$\mu_B$$
)= $9.2 \times 10^{-24} \text{JT}^{-1}$

10. Calculate the Zeeman shift produced in normal Zeeman effect when a spectral line of wavelength 590 nm is subject to a magnetic field of 0.5T. Assume the

specific charge
$$\left(\frac{e}{m}\right)$$
 of the electron is 1.76×10^{11} ckg⁻¹.

11. Determine the value of the rotational constant of H-F molecule from the following data. Reduced mass of H-F molecule = 9.583×10^{-28} Kg

Planck's constant =
$$6.632 \times 10^{-34}$$
 JS.

12. Find the threshold energy for the reaction ${}_{8}O^{18}(P,n)_{9}F^{18}$, given the Q value of the reaction is 2.742 MeV. Use the following data.

Mass of
$$_8O^{18} = 17.99916 \text{ u}$$
,

Mass of
$$_9F^{18} = 18.00095 \text{ u.}$$

3

- 13. $_{19}$ K 40 decays into $_{20}$ Ca 40 by β^- emission. Find the Q value of the decay given the following data. Mass of $_{19}$ K 40 = 39.96399 u and Mass of $_{20}$ Ca 40 =39.96259 u.
- 14. A magnetic field of 4T is employed in a cyclotron to accelerate protons. Find the frequency of reversal of the electric field applied between the Dees,
 - Given mass of proton = 1.67×10^{-27} Kg
 - Charge of proton = 1.60×10^{-19} C.
- 15. Calculate the radius of He atom if its electronic polarizbility is 1.85×10^{-41} Fm².

 Given $\varepsilon_0 = 8.85 \times 10^{-12}$ Fm⁻¹.
- 16. The dielectric constant of sulphur is 3.4. If a sample of sulphur contains 3.76×10^{28} sulphur atoms per m³, find the polarizability of sulphur atom. Given $\epsilon_0 = 8.85 \times 10^{-12} \, \text{Fm}^{-1}$.

PART-C

Answer any five questions. Each question carries two marks:

(5×2=10)

- 17. a) What is the direction of magnetic moment of an electron with respect to its orbital angular momentum? Explain.
 - b) How does the finite size of the nucleus affect the value of Rydberg's constant ? Explain.
 - c) Are the rotational energy levels of a rigid diatomic molecule equally spaced?
 Explain.
 - d) Why is Quenching necessary in a GM tube? Explain.
 - e) Can a photon be used as a projectile in a nuclear reaction? Justify your answer.
 - f) How does order parameter of a liquid crystal change with temperature ? Explain.
 - g) Is the electric field experienced by a dipole in a sample of dielectric material the same as the applied electric field? Explain.
 - h) What is electron confinement in a nano system? Explain.